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Convergence and Remainder Terms 0 iQ
In Linear Rank Statistics

by

Harold Bergatr5m and Madan L. Purl

University of G5teborg, Chalmers University of Technology,

and Indiana University.

A new approach to the asymptotic. normality of simple

linear rank statistics for the regression case studied

earlier by Ha’jek (1968) is provided along with the

estimation of the remainder term in the approximation to

normality.

1. Introduction and Summary. Let X1, .. . ,X be independent

random variables having o~ntinuous cdfs (cumulative distri-

bution functions) F1(x) , . . . ,F1~(x) respectively. Consider

a statistic S~ s(X11...1X~) with ES~ = 0 and
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ES~~ < o ~ . Then, ~~ prove the asymptotic normality of S
n

(as n-.oo) , Ha’jek (1968) uses the method of pro-i ection

which gives to the statistic Sn the approximation of

the form

A fl

(1.1) S~ = Z ~ ~ 
sa x.

j=1 J

Consider now the simple linear rank statistic

introduced by Hiljek (1962, 1968)

n
(1.2) S~ = ~ cJ~1i (R./n) -~E~~ (R./n) )

j=1 ~ J

where the c’s are known constants, R~ is the rank of

X~ among (X11...~ X~) and ~(‘) is a score generating

function defined on (0,1) . Ra’jek (1962) see also Ha’jek—

Sida’k (1967) established the asymptotic normality of S~

in (1.2) under the assumption that the F1 are contiguous,

e.g. when F1(x) = F(x-A dm1) where 1~ is the unknown

parameter and the d’s are the known constants. Later on

Ha’jek (1968) studied the asymptotic normality of S~ for

the general F.(x) C the non-contiguous case). Under the

set-up of Ha~Jek (1962)~Jur~~kova’ and Pun (1975) referred

to hereafter as JP, studied the problem of determining

the rate of convergence of the cdf of S~ to the limiting

normal ~df and

established it of order O(N~~~~) for o >O . In this

paper we not only ’ give a n” ~t-nr~ach to the asymptotic

—~~~~~~~~~~~ ---- _ _ _ _
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normality of Sn for the general F
~ 

(i.e. not necessarily

contiguous) but improve the results of JP in providinq a

sharper bound (for the general F1
1 s) . In tho passing, w-

may also mention that where as JP requires ~ to have a

bounded fourth derivative, here we only require th e boundedness

of the second derivative. Furthermore whereas this paper

gives more explicit error bounds than the JP paper, the

later gives more information on the limitinc~ behavior of

ES and Var Sn n
We now introduce some notations. We define ~(‘) = 0

outside (0,1) . Then, we can use the supremum norm

(1.3) = sup
tE(—T,~o)

Set

(1.4) p . R./n , p. . EL’,jX.~ , u(x) = 1 if x � O
1 1 11 1 1

and u(x) 0 , othe~~ise.

,-
,
‘~~~~

,/ ~~~~

Then (~~
. . 

.
\ .~~~~ .~~~~ 

. .

\ 
~~~ ~~~~~~~~ .

\~~~~~~
‘
~ -

~~~
‘ •.‘

. 
., \~ .\

~~~~~~~~~~ .

(1.5) R. E u(X. —X .) . .~~~~~~~~ ~~~~~~

~ j~ l 
1 3 \ •

~~~~~

‘ 
•~ ‘

In this paper, we shall deal with the following

approximation of S~ .

— .‘ .__‘.—T_. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
._ __%___- - - _____________ - .

- - — .  ..- ‘ .-.-- - . —- -
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(1.6) T =.E1 c.[$(p ..) -E (Øii)2+ (p. _ o.. )
~~
’(r..)3

assuming that 4i ’ exists on (0,1) and

(1.7) Tn j~~i 
EE T~~IX ~~

Since EE (p . — c ..)~~’(p ..)’ = 0 , it follows that

(1.8) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i=1 J ~~~1

Let H~ , G~ and be the cdfs of Sn T~ and

Tn respectively, and put

(1.9) = EES~~ , = EET~~ , = ~~ 3 T c ~~

Then our theorems are the following:

Theorem 1.1 : ~ has a derivative on (0,1) then

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•( x )  — ~2r~) ~ e cit
-

where C ic the constant in Berry-Esseen’ s ine~uaU.~~
(Zolotarev (1967) gives the approximation 0 , 9051) Further

(1.11) l 6 n~~~~~~’ ( ’ ~~~~~ i~~’n i

A 
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —. . . _ _ _ _ _ _ _ _ _ _ _  

~~~~~~~~~~~~~~~ .
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with an absolute constant C1 , provided 
~~
“ exists on

(0,1).

Theorem 1.2 : If 4r has a second order derivative on (0,1)

then for any positive integers n and r such that n � 2r

(1.12) ~!H (~~~.) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~

where C
2 is an absolute constant.

Remark. If the c. are choosen such that ~cH �a/~’n

with constant a for all i and n , then

“nr ~~a/.,/n

and for r = ~1og nJ , CrFnr~~~~~~~ a $e (log n) n~~ (l+0 ( 1~ gn~~

A
lNote that 5 C. is invariant and thus also 5n Fnr

is invariant under the transformation c. - Y  c . ,  i = 1,2

2. Same Lemmas.

Lemma 2.1 : For any positive integers r and n ,

2r <  n , we have

(2.1) E C ( p 1 — ~1•)
2r .~ ¶~b( r ) n r
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with

(2.2) b(r) ~~ —r ~ (
n_i

) k2ri!~~ 2r—2t ~-3t
t=1

— 1 3  3and for n r

(2.3) b(r) ~ 2—3r12r3 z~~ + 8n~~r
3
~

Proof: By (1.4) we obtain

n
p. -p.. = A E Eu(x. -X .)F .(x.)~1 ii n

~~#. 
1 j  -

~ ~~~~~~
-

By the polynomial theorem we then get

(2.4) EC (~~ -p..)
2
~~ ~-2r~ ~

2r)!_ E ,~~~E U ( X X ) F  (X.)~~~

S
~~
+... +s = 2r

We claim that any term in this sum is equal to zero if

s. = 1 for some j . Indeed we find that the conditional0
expection of the product with respect to all X. , j 

~ 
j 0

is equal to 0 if a. = 1 . Hence we have only to regard

terms with s~ = 0 or � 2 for any j , and there can be

at most t%r exponents s
J 

different from 0 . If s~ � 2

j ~~~ 1,2,,..t , s~ — 0  for j> t,i>t we obtain, observino

that 

-- . . — - ——~~~~~~~~~- -~~~~~~ . .
.—-.- . .- . .-- -- .‘.- 

.f- -
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!u(X
~
—X .) _ F ~~(X 1)

(2.5) E~ fl [u(X.-X .)

= ECfl F~~(X 1)_ F?( X .~~~ ~~4
-t

This inequality remains true for all permutations of the

indices 1,....,n. Put

(2.6) y(t) = E (2i~!

= 2r 1 t~
=1,...,t

Since t indices out of n-i indices can be choosen in

(
fl_i
) different ways we obtain from (2.4) through (2.6))

(2.7) E E ( P .  - p.  ) 2r~ ~~-2r ~ (f l 1) (t)4
_t

1. 11 t=i

We cla im that

(2.8) y(t) 
~ (2r—2t) ! 2

_t
~
2r_2t

Indeed, differentiating the identity

‘‘ r i r r r -:~ ,cv~ cr—n -- -:~-- - ,-.In :urn, Uv r j. .~...~~~ .
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t S2r (2r) L .

~ ~
, j(T ~i )  —

j=l ~ s1+.. .+s1 =2r 
1’ t j=1

twice with respect to all y .  and then putt ing all y. ec~ua1

to 1 , we obtain

t(2r) L~~(2 r_ 2 t )  
= ~ s. (s.—1) (2r)l

(2 r — 2 t )  I J J s]~! .. .= 2r j = 1

a. �2 , j = l...t
3

Now using (2.7) and (2.8),we get (2.1) and (2.2) . We now

estimate b(r) further, mainly for use when n and r are

large. Put r—t u . Then we can write

r—1
(2.9) b(r) ~ 2—3r ~ k ( u )

u=0

with

k ( u) n ( 2r) I ( r_u) 2u 2 3u
Cr—u)  I (2u)

Particularly

k ( 0 )  = 
(2r) I k ( l )  -1 3 (2r.)J.<4n r

and for u � l

1 2u 3 (r — u) r— u— 1)_2
_ _ _ _ _  

) . 2  ‘k(u+1) 
— n~~ ~ (2u+1) (2u+2)k ~ u)

fl 1 r3 ~½ for n r  ~~~~-~~ - .

_

~

— .  
— 

—;--— .- —— —
~~

-..—.,-- . - -. - . . .-
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Hence

b( r ) ~~2 —3r 
• 
(2r)! 

~l+8n
1r3:r i

—l 3 3for n r

Lemma 2 .2  : For any positive integers r and n

2r~~ n , we have

A 2r ‘2 r  2r( 2.10) E(T —T ) ~~c (r )  ~ Fn n n , ,r

if ~~‘ exists on (0 , 1) , and if ~~“ exists on (0~JJ

2r .~( 2.11) EC (S~ — T~) ~ ~ b ( 2r) ~~
“ 2r 1,2r

n , r

(2. 12) E E ( S ~ —T~ ) 2
~~ � d( r ,~~)~~~

’
~r

with

b( 2r) �rt 2r 2r n-i. (4rfl ~
4r_2t  ~-3tE 

~ (4 r— 2t )  It— 1

c(r) ~ ~
2r —2r 2r (4r) I 

~
4r_2t 

2-t
(4r—2t) I

-~~~~~~~ 1

d(r,$) �~~Cb(2r) ~~~
- 

~~$
“

~~~ 
+ c(r)2~~~~

,
~r
1
~~~

2r

Further we have the estimates

_ _ _
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(2.13) b (2r) ~~2—6r (4~~~ :1+2 6~~
1r3:

for 23n~~r
3 
~~

(2.14) c(r) ~~~~~~ E 1+2
3
n
_1

r3~ for

Remark : By Stirling ’ s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
have

~ ~~~~~~~~~ (exp-2r) exp

Proof : By (l..6) and (1.8) we get

(2.15) T
n~
T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i~ i

and for j � i

(2.16) EE (p 1-p. .)~~’(p..) IX~ =

- Fk(Xi)~~~
’(p. i) lX .) = ~~E u (X.-X.)-F.(X.)~~~’(~~., ) ‘X.

since the conditional expectations in the sum are zero for

j ~ k, i . Now using the relation

(p. _p. ,)
~~
’(p. .) ~~i E u(X . -X~)
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and noting that

E~~(p
1
—p ..H ’(p. .) ~~~~ = 0

we obtain from (2.14)

A fl n
(2.17) T —T ~ I c.V.n n 

~~~~~~~~~ 
1 1J

with

(2.18) V.~ = Eu(X1—X~) 
_ F

~ (x1) ‘(p11)_Er:u(x 1
_x

~ ) —

— 
~~~~~~~~~~~~~~~~~

Clearly

(2.19) ~~~~~~~~~ = 0 , E~V1~~iX 1~ 
= 0

By the polynomial theorem we get

(2.20) E~~(T T )2r, = n 2rEr ~ C . V  
,,2r

n i=l j�i ~~~

= ~—2r ~ 
(2r ) I  

Er “ : (c.V. • )
1J

)n ~ ‘-~--i 
.
~~~~~ 

l U
11 tI (s. . !)

i=i. ~~~ 
13

where the sum should be taker . over terms corresponding to

different vector ao1utic~--s ~~~~ , ~~, j = l,...n , j ~ I 

- .~~ - . . . , -.- - , .-
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of the equation

n n
(2.21) 1 1 s. . 2r

i=l i~i 
~

The expecLation

n n S.
(2.22) E~ ri ~i - 

3.J~
i=1 j~ i 

13

is equal to 0 for some vector solutions of (2.21” s:~nce

(2.19) holds, and we have only to regard those solutions

for which the expectation (2.22) is not equal te 0

We say that S
j

~~~ gives the contribution -

~

- s~~ to

the sum (2.21) from each of the indices i and j  . Hence

according to this notation an index k gives the contribution

i n i n
(2.23) g(k) = I 5k +~~~~ I

j�k ~ j~ k
3

to the sum (2.21). By conditioning with respect to all

X~ , j � k we easily find that the expectation (2.22) is eau~ l

to 0 if k gives the contribution to the sum (2.21),

i.e. if = 1 for exactly one index j � k , and

= 0 for i ~ k or if = 1 for exactly one j

and 
~kj ° for j � k

The sum I on the right hand side of (2.20) can be

divided into partial sums as follows. Let C be a collection

of different positive integers belonging to the set
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1,...,2r , say C = (l,2,...,t) . Let consist of all

4 terms in (2.20) corresponding to the vector solutions

of (2.21) such that

(a) s. . = 0 if not both i and j belong to C ;

(b) for any kEC the contribution to the sum (2.21) is

Thrger than 1/2 . Note that C can contain at most 2r

different integers since every k E C gives at least the

contribution 1 to the sum (2.21’ . Clearly partial sums

and y contain no common terms if C, ~ C • Con—C1 C2 ~. 2
sidor now the expectation

t t S.
EC rt 11 (c.V. ) ~~~

1. lJi 1  j �i

where the i and j belong to the collection C • Note

that sj~ may be equal to 0 for some pairs (i,j) . By

Holder ’s inequality we get, using the fact that

IV . • 1
13 

H

( 2 .24 )  I E  ~ fl ( c . V , . ) ~~~~ I � ~ ~ I c  ~J r E: (V
i=1. ~~~~~~ 

~ 
~~~~~~ ~~~~~~ 

3. U

~ 2 2~~~ 4
,~ 1

2E ~~~~~~~~

where

t t
( 2 . 2 5 )  s. = I s. . , s. = :~~

-
1 j =l 13 1=1 ~
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The partial sum corresponding to C is then estimated by

( 2 . 2 6 )  (2r) I (2 2 r T 1 I 2r , 1 i )
II 1(s. .)I
i=l i�j ~3

Note that t 
(2r)1 is an integer. Hence

~ (s. .1)i=1 i~~

we have N(t) =

ti n ( s . . ) !
13

terms in the class C which are estimated by (2.24) . Let

c 
~ 

be the set of all terms

fl n S.
l E n  ti (c . V. ~i=1 j�l 1 13

in (2.2 ) which belong to some class C containing

exactly t indices. Let (si,s2,...,st) in (2.26) be
t

given, 0
~~

Sl % S 2 <~~~ ~~~ 
, I 2r . Then according
i=l

to the symmetry the set contains a sum of terms, each

estimated by

( 2 . 27) 22r 11~~111 2r~~~~~~~ 1~~
i

where (k j . . . kt ) is any combination of number s 1, 2,...,n

to the tth class and in any order within this c’-~~’.

the number of terms in r~ for a fixed vector

_ _ _ _ _
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as above be n(t) and the sum of terms

(2.27) belonging to (si, s2s.....st) be A(si,s2,...,st)

(Note that n(t) depends on ~~~~~~~~ ). Then , since

is a symmetrical funct ion

(2.28) 
~~~~~~~~~~~~ 

= 
n(tj

where 1~~ is the sum all terms belonging to all permutations

of the numbers 12 ,...n. By HOlder ’s inequality we get

observing that

1

:k
u

i EC
2 

‘ 
i~ l 

= ~

(2 .29 ) 1’ 11 1C~ 
~ ti (l /ck

2r)
21.

i=l i j =l i

and here

11 2 r n1 
~~~

2r
k. n . 1

1 1=1

Hence we obtain by (2.28) and (2.29)

A ( s i.~s2,...,st) %2 2r
!k l ll

2r n ( t )  ~ ~~~2r

Since c.~ contains (~ ) N ( t) terms we then find that

gives at most the contribution
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~~~~ ~~~~~~

to the right hand side of (2.20). Putting

1 -~~~~~~~~ 1~~~ r Fnr n . 1 ‘ nri=1

and regarding the sets for t = 1,2,..•,2r , we obtain

from (2.20) that

(2 .30) EE (T~ _T~)
2r

~ ~~2
2r

~ 
2r~ i~~

2r
~

2r 
‘~~~~(~~) N ( t )

We estimate N(t) in the following way. Consider the

identity

t t t t
(2.31) (Z ~~X~X~)

2r 
= I (2r)! 

)1 1 1 3�3. 
( x x . )  13

i=l j=]. ~~

If art index k gives the contribution � 1 to the sum
(2.21), ..e. to the sum

t t
I Es .. =2r
1=1 ~~~

then the double product

t t S..
TI TI (x. x~ ) 13

j—1 j~ i ~~~

- - . .

-...-.,.-- -.- -~~ 
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contains as factor at least in the power 2. Hence

differentiating the identity twice with respect to each

Xk , k = l,2,...,t and then putting all x~ equal to 1

we get the inequality

t 2 t t
(2.32) 2tN(t) � ( ri ~~~~

—( I 1 x.x.)2r3xk=1, k = 1,2,...,t
k=l Xk i~ 1 j�i ~

The right hand side, however , is at most equal to

t 2 t 4 .

(2 33) 1 1 1  —b—- ( I x )4r)~ — (4rj ! ,~~~~ -

k=1~~~k i i  i = 1, k= l ,...,t (4r—2t) !

Combining (2.30), (2.32) arid (2.33), we get

EC (Tn~Tn
) 2r.! � c Cr) ~ 

2rF2r

with

c(r) = 22rfl_2r~~~ (n) (4r—2t) ! t~~
_2t 

.

= .;
~ .

‘

~ Jc~~~~

We estimate c(r) exactly in the same way as we have

estimated b(r) in Lemma 2.1 and then obtain for u = 2r -.t 



-

r —1
c(r) � k(u)

u=0

with

k ( u ) = fl 
(2u)!(2r—u) ! (2r—u) 

2u

Hence

k(0) = , k(1) ~~~~~~~

and for u � 1

k(u+l) 4 — 1 3  1 — 1 3  3
k (u) � - ~~n r for n r

Hence for n 1r3 ~~

c(r) ~ ~~~~ [l+ 8n~~r~~

‘4. ... 
. 
. .• 

-—.•.——*———. -. .
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Thus we have proved (2.13) and (2,14) of the lemma .

It follows by the definition of T that

S~~
_ T

~ = E c ~ !~~-F(!1)

with

1 2 IIF~ t ~~~~~ — 

~~~ ~ .

Hence

EE (S~ 
_ T~)

2r
~ ~~

2r-l 
~~~~~~~~~~~~~~~ (~~ 

-

and by Lemma 2.1.

E~ ( 1—E (~~) 
2r~ ~ 22’E: ~

2r

~1I~”~
2r EE ( P ~ 

_~~~~)4r~ �fl
_2r

b(2 )~H~
t fl 2r

Thus we get (2.11)

EC (S~_T~ ).2r
~ ~

b( 2r)Fnr

By Minkovski ’s inequality we obtain (2.12) from (2.10) and

(2.11)

a .;. - ... .~
, - — -
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1 1

E~~ E (S~~— T )  
2r~ ~~~~~~ (Sn

_T
n) 

2r
~~÷~~2r ~ (T~ _T~ ) 

2r~

Lemma 2.3: T = ~ T~~~ with independent r.3ndom variablesn

( i )  = ~~~~~~~~ -

+ ~ ~~~~~~~~~~~~~~ 
-F.(X.))~~(p.. ) 1X j~

Further

(ii) E CE~ T~~~~!3
~ � 4~2P

3
+~~~”~

3
) .~~~ i c~~~j=1 j=1

Proof: We get the representation (i) by (2.16). Using

well-known inequalities

I (a+b)
3

I~~ 4El al
3
+IbI

3
~ ‘

we obtain

+ ~ •

Here

E~~~~(p~. ) -E (p ~~ . )~~~~~~~~T ~ 
‘
~~( * ( p ~~~” - E ( ~~( p .  )) 2 
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Thus we get (ii).

3. Proofs of the theorems.

(a) Proof of Theorem 1.1 : (1.10)follows from 13erry—Ess~ en ’s

inequality and Lemma 2.3 and (1,11) from Lemma 2.2 (2.12).

(b) Proof of Theorem 1.2. For h> 0 we get

(3. 1) P E S �~~ X~~~ P(S �5 nX , lS n
_T

nRh~n
)

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Applying Theorem 1.1 we get

A A

(3.2) P~T � ~~ (x+h)~~�~~(x+h ) + 4C ( 2 ~~~~~~~ . y
X1 i=l

Here

(3.3) ~~(x+h) ~4(x) ~~~~~~ =~~
tx) +— ~~

.—

By Chebychev ’s inequality and the inequality (2.12) of Lemma

2.2 we get

(3.4) ~~~~~~ ~~~~~~ ~~d(r ,~~) F ~~~(h5~~Y
2r

Now we choose n such that

4 _____ _______ _____ 

_____________________ _____________
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h ~~‘ —2r-
~—— = d ( r ,~~) (h .nr . i

i.e.

1 1
( 3 .5) h = (2 2d(r,’:) 7r~ 2r ,  2r+ 1

It follows by Lemma 2.2 (2 .12), (2.13) and (2.14’ and the re

remark made there in Lemma 2.2 that for n 1r3 � 3/8

1
2r 

~ c’r(~~~’~ +

with an absolute constant C’ . Then it follows by (3.’~

and (3.5) that

+

2r
� C

2EÔ
l
(!!$h 1~+

/l T
~)rFnr

2
~

+1

By (3.1) — (3 .6)  we get the inequality (1.12) in one direc’-jor-i.

It follows for the other direction in the same way.
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